
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63140 601

A Hybrid Approach for Software Fault Prediction

Using Artificial Neural Network and Simplified

Swarm Optimization

Ankit Pahal
1
and R. S. Chillar

2

Department of Computer Science & Application, M.D. University, Rohtak, Haryana, India
1,2

Abstract: The major task in the software developing is to provide a software which is free from any kind of defects.

But this task is hard to accomplish by the developers. Fault prediction can be classified as one main region to forecast

the possibility of the software containing faults. The aim of the fault prediction in software development life cycle is to

categorize the software modules in fault-prone and non fault-prone modules as soon as possible. This classification of

fault-proneness of a module is actually essential for reducing the cost and increasing the efficiency of the software

development process. In this paper, we propose a hybrid model using artificial neural network (ANN) and Simplified

Swarm Optimization (SSO) for fault prediction. ANN is used for categorization the software modules in fault-prone

and non-fault-prone modules, and SSO is then used to reduce dimensionality of dataset. This approach is easy to

implement as no expert knowledge is required. The attained results confirms a preferred performance of this approach

for fault prediction and output rate or recognition. The results indicates the prediction rates of proposed method is more

than 90 percent in best condition.

Keywords: Software fault proneness, fault prediction, artificial neural network, simplified swarm optimization.

I. INTRODUCTION

Presently, software plays a significant share in numerous

areas; consequently software testing [1] is also a necessary

task. Though, with the growth of the software business,

software are getting larger and larger in size, so it becomes

a costly task and consumes a lot of effort and time in the

software development. Since we rely on the software

systems very much in our day-to-day lives, software faults

can effect extremely and even lethally, particularly with

the high risk systems. To avoid this situation, software

modules’ potential faultiness prediction through the

development cycle will be a much advantage for

scheduling activities. As the studies demonstrate that the

most common faults are frequently found in merely a little

software modules [2], so developers must need to

concentrate on these fault-prone software modules.

Alternatively, it is also desired to procedure designs of non

fault-proneness modules. These complications can be

resolved by using the existing historical data & extracting

knowledge and building a model for the prediction of

fault-proneness which can be used in future developments.

Even though software is developed in accordance with the

standard procedures, still, software quality can be affected

by many factors. Presently, the main objective of software

industry is to make software systems of high quality and

eliminate possible software faults.

The objective of software fault prediction is to classify the

fault-prone software modules before the testing phase

using certain primary characteristics of the software

system. Subsequently, this assist in proficient and cost-

effective allocation of testing resources. A lot of research

to construct and assess the fault prediction models for the

fault proneness prediction of the software modules has

been done in the past. Regrettably, software faults cannot

be easily measured, though it can be assessed through

software metrics. Many studies shows first- hand proof

that associations occur in certain software metrics and

fault-proneness [3]. Classification of software systems

with fault-proneness is usually realized with the help of

binary classifiers that predict if a module contains fault or

not using several software metrics. Initial methods of

prediction for software fault-proneness were built using

statistics, though the prediction efficiency was insufficient

of these methods. For this reason, most modern studies

introduce the machine learning systems comprising data

mining [4], SVMs [5], ANN [6], naive Bayes algorithm

[7], and fuzzy logic, etc. While software faults were

explored using these methods, yet there are numerous

characteristics of faults continuing vague. We observed

that the associations among software metrics and fault-

proneness are of tenintricate and nonlinear, the suitability

of outdated linear models is conceded, that effects in the

building of non-linear models, and higher performance as

compared to linear models is expected.

1.1 Artificial neural network

ANN is a dominating supervised learning technique. It

pretends the construction of the human brain with the help

of artificial neurons network. The two key components of

network structure are neurons and weighted-directed

relations, which connect one layer of neurons to another

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63140 602

layer of neurons (Fig. 1).In the training phase, certain

weights of the connections are adjusted. ANN models,

without any contribution, can be trained for these features

from sample data and this information can be used to

predict or categorize data in a dataset. Since ANN

executes its job by means of a black box, it is difficult to

understand the ANN models. A significant benefit of ANN

is that they can resist discrepancy or omitted values in

datasets. Also ANN is proficient of understanding

complex non-linear input and output conversions, and

therefore, is very useful for modeling of software fault-

prediction.

Fig. 1: A general structure of ANN.

Commonly, the efficiency of ANN relies on a suitable

choice of the best appropriate input variables since certain

inappropriate &repeated input variables normally occur in

the input dataset which can make prediction tougher and

reduce simplification performance of ANN.

1.2 Simplified swarm optimization

Only the software metrics are not sufficient for training the

neural network for predicting fault-proneness and we must

reduce dimensionality of input dataset. Furthermore, every

software metrics effectthe software fault-proneness

predictiondifferently, and certain metrics effect the

evaluation of software fault-proneness prediction slightly.

Consequently, we musteliminate themetrics which have

alittle impact for decreasingbiased input dataset and

increase the effectiveness of the prediction model.A

sequence of comparatively noveloptimization algorithm is

theSwarm intelligence optimization comprising bee colony

optimization [8],particle swarm optimization (PSO) [9]

andant colony optimization [10]etc.They simulates the

swarm behavior of thepopulation of individuals, using the

exchange of information and teamworkofswarms to attain

the optimization. In 1995, Eberhart and Kennedy

developed a population-based optimization technique

known as PSO, althoughPSO is a simple algorithm as

compared tothe otheralgorithms of swarm

intelligenceowing to thebetter convergence rate andless

control parameters. Nonlinear complex optimization

problems are primarily solved using PSO. Furthermore, it

uses the characteristics of the data itself anddo not require

any assumptions for software datasetsin the

implementation procedure of PSO. As a result PSO

appealsseveralresearchers and has arose as the best tool for

optimization problems. But PSO likewise has

particulardrawbacksfor examplelow convergence rate in

the later phases of PSO, poorer convergence efficiency,

generally has three parameters and fall into local minima

easily etc. Therefore, to overcome the drawbacks of PSO,

a new Simplified Swarm Optimization (SSO) [11] is

proposed that has superior global search ability. Hence, in

this paper, SSO is used for reducing the dimensionality of

input dataset and finds certain metrics from the optimal

solution of SSO.

Fig. 2. A general SSO algorithm.

II. EXPERIMENTAL METHODOLOGY

2.1. Model methodology

To develop the software fault-proneness prediction

method we have used the ANN and SSO hybrid

approach.This is well-known that, ANN has

remainedextensivelyfunctional in pattern recognition

because of the reason that ANN-founded classifiers are

able toincludestructural andstatistical information together

and accomplishsuperior performance as compared to the

modest minimum distance classifiers [12], are also broadly

used in soft computing. Presently,the widely used ANN

model is a feed-forward multi-layer neuralnetwork which

is based on error back propagation (BP) algorithm. The

neural network model consist of an input layerand an

output layer, and also one or more hidden layer in

between. The neighboring layers accomplish full

connectivitybetween neurons, though no connection is

present between neurons withina layer. We used a three-

layer networkANN in this paper. Furthermore, SSO is a

universal convergence assured search method thatpresents

the Exchange Local Search (ELS) into the traditional PSO.

SSO outperforms traditional PSO on many problems

instances. Therefore, SSO is used for reducing

dimensionality. In this paper, on the basis of hybrid ANN

and SSO, an improved software fault-proneness prediction

methodis suggested. The block diagram ofrecommended

softwarefault-prone prediction method is presented in Fig.

3.

Fig. 3 Block diagram of proposed approach.

2.2. Software metrics

Severalstudies nowadaystake software metrics as

important parameter to recognizethemodules which are

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63140 603

fault-prone and their studiesrevealed that software metrics

are actually useful in predicting the fault-pronemodules.

Previous research suggestedvarious software product

metrics containing both static and dynamic for the

prediction of fault proneness and determining the testing

persistence. Code structure measurement, a static metric,

is used to recognize software complexity, for examplethe

Halstead’s Software Science [13] and the McCabe’s

Cyclomaticnumber. Whereas Dynamic metrics measure

the testing persistence using structural and data flow

coverage.In the paper, McCabe [14], Halstead [15]

metrics, etc. are used for fault-proneness prediction.

Figure 4describesexplanation of selected metrics.In this

paper, each software module is denoted by 21 metrics for

software fault-pronenessprediction in experiments.They all

are eminent software metrics in the software fault-

pronenessprediction perspective and consequently we do

not offer the explanation of these metrics. The detail of the

metrics can be found in [16].

Fig. 4 Selected Metrics.

2.3. Data standardization

In the ANN, the input dataset is (x(i), y(i)) (i = 1, 2, . . .,

q), where x(i)∈ Rdis software metric valuesvectorthat

enumerate the metric ofthe ith class, and the total number

of data samples is denoted by q. the output neuron y(i) of

ith class is expected to give outputvalue “1” conforming

the fault-proneness and “0” conforming the non fault-

proneness. Each input to the similar range is usually

normalize while training the ANN.

Performance of the training process is thus enhanced,

ensuring the equality of each initial input asimportant.In

the case of software metrics the upper bound is

typicallyunrestricted in value range. Therefore, so as to

normalize it is essential to attain upper andlower bounds of

thevalue range of software metrics.According to

datasetswe can obtain thevalue of every metric for definite

datasets and software metrics. The minimumand

maximum values can be obtain easily as the value of every

single metric has been givenin these datasets. Letthe

minimum and maximum values be min(x(j)) and

max(x(j))respectively ofthe jthsoftware metric in the

dataset for each software metric. Then the scaledvalue

X(j)is

Therefore, everynoted value is drawn to the closed interval

[0,1]. (X(i), y(i)) (i = 1, 2, . . ., q) is the normalized dataset

and X(i)∈ Rd is the normalized metrics vector.

2.4. Reducing dimensionality

Suppose thata dataset, D = (S, M) where M = {m1, . . .,

md} is d metrics and S = {S1, . . ., Sq} is q samples sets,

respectively. C = {c1, . . .,ct} denotes type set.We convert

the solution X of SSO intoa binary string to reduce

dimensionality, as the following operation: In place

ofsomeknown random number, rand, in the interval [0,1],

if rand < 𝑆 x then X = 1, else X = 0

whereS x =
1

(1+e−x)
 is sigmoidal function.In

recommended reducing dimensionality method, a binary

(0 or 1) stringcharacterizedthe position ofparticle i. Anda

selected metric is denoted by 1, whereas a non-selected

metric is denoted by 0. In SSO, whenwe get the absolute

solution Pglobal, the corresponding metricisfollowedwith

respect to Pglobal position. Assume M1⊂ M is the final

selected metric,and let l <d bethe total selected metrics.

III. PROPOSED ALGORITHM

As the input & output dataset for ANNare normalized

thusthe value will be in the range [0,1]. ANN is considered

for a representation of “0” or “1”from the data space.

Theselected metrics set M1represents the number of input

neurons ofANN and there is a single output neuron in the

proposed fault prediction method. So we can obtain the

prediction algorithm as follows.

Step 1.The input metrics Xis a normalized metric which

constantly lies in the range [0,1].

Step 2. The dataset is divided into testing and training

subset randomly.

Step 3. ANN is modelled on the training subset & trained

ANN is obtained.

Step 4. The dimensionality of M is reduced using SSO to

obtain M1 and the input dataset X is reduced to X’.

Step 5. On the basis of new reduced dataset, trained ANN

is developed.

Step 6. Fault-proneness module is predicted using the

ANN.

IV. RESULTS & DISCUSSIONS

In this study, four projectsfrom the NASA repository are

used as datasets that are openlyavailable from the NASA

Metrics Data Program [17]. Two of the selected datasets

are PC1 and JM1, which are implemented in C language

where a function is considered as module. The further two

selected datasetsare KC1 and KC3 are implemented inC++

and Java languages respectively where a method is module

in this instance. Everydataset hastheir software metrics

and the associated variable that tells if the modulehas any

fault-pronenessor not. The modules that havev(G) > 10 in

the four selected datasets, classify to be fault-proneness as

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63140 604

stated by the regularMcCabes rules. The main

characteristicsof the datasets are shown in Table1.

Table 1. Selected datasets.

This approachoperates based on the number of incorrect or

correct answers.The data in the Confusion matrix

demonstrates the performance of the proposedalgorithm

for two-class problem
18

 that is shown in Table 2.

Table 2. Confusion Matrix

The accuracy of the proposed software fault-proneness

detection approach is calculated as

Accuracy =
(TP + TN)

(TP + FP + TN + FN)

The results of simulation of software fault-proneness

detection approach are provided, using MATLAB

software and ANN toolkit. The parameters used to

determinethe performance of the proposed method are

shown in Fig 5.

Fig. 5 Selected Parameters

Fig. 7 Detection of fault-prone modules in the PC1 data set

The results demonstration accuracy of the proposed

approach’s performance is 90.08 %.

Fig. 8 Detection of fault-prone modules in the JM1 data

set

The results demonstration accuracy of the proposed

approach’s performance is 86.06 %.

Fig. 9 Detection of fault-prone modules in the KC1 data

set

The results demonstration accuracy of the proposed

approach’s performance is 92.03 %.

Fig. 10 Detection of fault-prone modules in the KC3 data

set

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63140 605

The results demonstration accuracy of the proposed

approach’s performance is 89.13 %.

V. CONCLUSIONS

This paper examined the usage of hybrid ANN and SSOto

improve the software fault-proneness prediction

method.The presentedmethod can predict the software

modules’ fault-pronenesssimply using software metrics.

The keycharacteristicsof presented prediction methodisthat

dimensionality of themetrics is reduced using SSO and

software modules’ fault-proneness is predicted using

ANN. The reduction dimensionality method is actually

effectivesincethere are 3 control parameters in PSO,

whereasSSO have single parameter only, consequently

SSO performs accurately. Results from experimentsensure

the simplifying dimensionalityprocedure which rely on

SSO can reduce ANN model. The hybrid model of ANN

& SSO has superior performance than currentbest other

prediction methodologies and also it has verified to be

muchoperational for foundingassociation between fault-

proneness and software metrics. In the fault-proneness of

software modules,the non-selected metrics from metric

space have less significance over the few selected

metrics.Therefore instead of all metrics, developers must

concentrate on these selected metrics in thesoftware

development process.The results, at best, recommend a

greater detection rate of the proposed approach higher than

90%.

The software fault-proneness prediction work should be

further improved by using combination of other

evolutionary machine learning algorithms for discovering

the most significant feature for fault-proneness prediction

and obtaining the susceptible modules and metrics.

REFERENCES

[1] A.K. Pandey, N.K. Goyal, Prediction and ranking of fault-prone

software modulesSpringer Series: Early Software Reliability
Prediction, 303, 2013, pp. 81–104.

[2] Porter, R. Selby, Empirically guided software development using

metric-based classification trees, IEEE Softw. 7(2)(1990) 46–54.
[3] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking

classification modelsfor software defect prediction: a proposed

framework and novel findings, IEEETrans. Softw. Eng.
34(4)(2008)485–96.

[4] G. Czibula, Z. Marian, I.G. Czibula, Software defect prediction

using relationalassociationrule mining, Inf. Sci. 264 (2014 April)
260–278.

[5] C. Jin, Software reliability prediction based on support vector

regression usinga hybrid genetic algorithm and simulated annealing
algorithm, IET Softw. 5 (4)(2011) 398–405.

[6] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, P.

Thambidurai, Object-oriented software fault prediction using neural
networks, Inf. Softw. Technol.49 (5) (2007) 483–492.

[7] C. Cagatay, S. Ugur, D. Banu, Practical development of an eclipse-

based soft-ware fault prediction tool using naive Bayes algorithm,
Expert Syst. Appl. 38(3) (2011) 2347–2353.

[8] F. Kang, J.J. Li, Z.Y. Ma, Rosenbrock artificial bee colony

algorithm for accurateglobal optimization of numerical functions,
Inf. Sci. 181 (16) (2011) 3508–3531.

[9] Alfi, H. Modares, System identification and control using adaptive

particleswarm optimization, J. Appl. Math. Model. 35 (3) (2011)
1210–1221.

[10] S. Khan, A.R. Baig, W. Shahzad, A novel ant colony optimization

based singlepath hierarchical classification algorithm for predicting

gene ontology, Appl.SoftComput. 16 (2014 Mar) 34–49.
[11] Changseokbae, Wei-Chang yeh, Noorhanizawahid, Yuk yingchung

and Yao liu, “A new simplified swarm optimization (sso) using

exchange local search scheme”. ICIC International @ 2012 issn
1349-4198. Volume 8, number 6, June 2012.

[12] Y.Q. Yang, G.J. Wang, Y. Yang, Parameters optimization of

polygonal fuzzy neural networks based on GA-BP hybrid
algorithm, Int. J. Mach. Learn. Cybern. 5(5) (2014) 815–822.

[13] N. E. Fenton and S. L. Pfleeger. Software metrics: A rigorous and

Practical Approach. London: Intl Thomson Computer Press, 1997
[14] T.J. Mccabe, C.W. Butler, Design complexity measurement and

testing, Com-mun. ACM 32 (12) (1989) 1415–1423.

[15] M.H. Halstead, Elements of Software Science, Elsevier, New York,

1977.

[16] M. Jureczko. Significance of different software metrics on defect

prediction. An international Journal of Software Engineering, 2011,
1(1), p. 86-95.

[17] http://mdp.ivv.nasa.gov/index.html Date accessed 23/01/2017

[18] R. Burduk, P. Trajdos, Construction of Sequential Classifier Using
ConfusionMatrix, Lecture Notes in Computer Science, 2013, pp.

401–407.

