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Abstract: The major task in the software developing is to provide a software which is free from any kind of defects. 

But this task is hard to accomplish by the developers. Fault prediction can be classified as one main region to forecast 

the possibility of the software containing faults. The aim of the fault prediction in software development life cycle is to 

categorize the software modules in fault-prone and non fault-prone modules as soon as possible. This classification of 

fault-proneness of a module is actually essential for reducing the cost and increasing the efficiency of the software 

development process. In this paper, we propose a hybrid model using artificial neural network (ANN) and Simplified 

Swarm Optimization (SSO) for fault prediction. ANN is used for categorization the software modules in fault-prone 

and non-fault-prone modules, and SSO is then used to reduce dimensionality of dataset. This approach is easy to 

implement as no expert knowledge is required. The attained results confirms a preferred performance of this approach 

for fault prediction and output rate or recognition. The results indicates the prediction rates of proposed method is more 

than 90 percent in best condition. 
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I. INTRODUCTION 

 

Presently, software plays a significant share in numerous 

areas; consequently software testing [1] is also a necessary 

task. Though, with the growth of the software business, 

software are getting larger and larger in size, so it becomes 

a costly task and consumes a lot of effort and time in the 

software development. Since we rely on the software 

systems very much in our day-to-day lives, software faults 

can effect extremely and even lethally, particularly with 

the high risk systems. To avoid this situation, software 

modules’ potential faultiness prediction through the 

development cycle will be a much advantage for 

scheduling activities. As the studies demonstrate that the 

most common faults are frequently found in merely a little 

software modules [2], so developers must need to 

concentrate on these fault-prone software modules. 

Alternatively, it is also desired to procedure designs of non 

fault-proneness modules. These complications can be 

resolved by using the existing historical data & extracting 

knowledge and building a model for the prediction of 

fault-proneness which can be used in future developments. 

Even though software is developed in accordance with the 

standard procedures, still, software quality can be affected 

by many factors. Presently, the main objective of software 

industry is to make software systems of high quality and 

eliminate possible software faults. 

The objective of software fault prediction is to classify the 

fault-prone software modules before the testing phase 

using certain primary characteristics of the software 

system. Subsequently, this assist in proficient and cost-

effective allocation of testing resources. A lot of research  

 

 

to construct and assess the fault prediction models for the 

fault proneness prediction of the software modules has 

been done in the past. Regrettably, software faults cannot 

be easily measured, though it can be assessed through 

software metrics. Many studies shows first- hand proof 

that associations occur in certain software metrics and 

fault-proneness [3]. Classification of software systems 

with fault-proneness is usually realized with the help of 

binary classifiers that predict if a module contains fault or 

not using several software metrics. Initial methods of 

prediction for software fault-proneness were built using 

statistics, though the prediction efficiency was insufficient 

of these methods. For this reason, most modern studies 

introduce the machine learning systems comprising data 

mining [4], SVMs [5], ANN [6], naive Bayes algorithm 

[7], and fuzzy logic, etc. While software faults were 

explored using these methods, yet there are numerous 

characteristics of faults continuing vague. We observed 

that the associations among software metrics and fault-

proneness are of tenintricate and nonlinear, the suitability 

of outdated linear models is conceded, that effects in the 

building of non-linear models, and higher performance as 

compared to linear models is expected. 

 

1.1 Artificial neural network 

ANN is a dominating supervised learning technique. It 

pretends the construction of the human brain with the help 

of artificial neurons network. The two key components of 

network structure are neurons and weighted-directed 

relations, which connect one layer of neurons to another 
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layer of neurons (Fig. 1).In the training phase, certain 

weights of the connections are adjusted. ANN models, 

without any contribution, can be trained for these features 

from sample data and this information can be used to 

predict or categorize data in a dataset. Since ANN 

executes its job by means of a black box, it is difficult to 

understand the ANN models. A significant benefit of ANN 

is that they can resist discrepancy or omitted values in 

datasets. Also ANN is proficient of understanding 

complex non-linear input and output conversions, and 

therefore, is very useful for modeling of software fault- 

prediction. 

 

 
Fig. 1: A general structure of ANN. 

 

Commonly, the efficiency of ANN relies on a suitable 

choice of the best appropriate input variables since certain 

inappropriate &repeated input variables normally occur in 

the input dataset which can make prediction tougher and 

reduce simplification performance of ANN. 

 

1.2 Simplified swarm optimization 

Only the software metrics are not sufficient for training the 

neural network for predicting fault-proneness and we must 

reduce dimensionality of input dataset. Furthermore, every 

software metrics effectthe software fault-proneness 

predictiondifferently, and certain metrics effect the 

evaluation of software fault-proneness prediction slightly. 

Consequently, we musteliminate themetrics which have 

alittle impact for decreasingbiased input dataset and 

increase the effectiveness of the prediction model.A 

sequence of comparatively noveloptimization algorithm is 

theSwarm intelligence optimization comprising bee colony 

optimization [8],particle swarm optimization (PSO) [9] 

andant colony optimization [10]etc.They simulates the 

swarm behavior of thepopulation of individuals, using the 

exchange of information and teamworkofswarms to attain 

the optimization. In 1995, Eberhart and Kennedy 

developed a population-based optimization technique 

known as PSO, althoughPSO is a simple algorithm as 

compared tothe otheralgorithms of swarm 

intelligenceowing to thebetter convergence rate andless 

control parameters. Nonlinear complex optimization 

problems are primarily solved using PSO. Furthermore, it 

uses the characteristics of the data itself anddo not require 

any assumptions for software datasetsin the 

implementation procedure of PSO. As a result PSO 

appealsseveralresearchers and has arose as the best tool for 

optimization problems. But PSO likewise has 

particulardrawbacksfor examplelow convergence rate in 

the later phases of PSO, poorer convergence efficiency, 

generally has three parameters and fall into local minima 

easily etc. Therefore, to overcome the drawbacks of PSO, 

a new Simplified Swarm Optimization (SSO) [11] is 

proposed that has superior global search ability. Hence, in 

this paper, SSO is used for reducing the dimensionality of 

input dataset and finds certain metrics from the optimal 

solution of SSO. 

 

 
Fig. 2. A general SSO algorithm. 

 

II. EXPERIMENTAL METHODOLOGY 

 

2.1. Model methodology 

To develop the software fault-proneness prediction 

method we have used the ANN and SSO hybrid 

approach.This is well-known that, ANN has 

remainedextensivelyfunctional in pattern recognition 

because of the reason that ANN-founded classifiers are 

able toincludestructural andstatistical information together 

and accomplishsuperior performance as compared to the 

modest minimum distance classifiers [12], are also broadly 

used in soft computing. Presently,the widely used ANN 

model is a feed-forward multi-layer neuralnetwork which 

is based on error back propagation (BP) algorithm. The 

neural network model consist of an input layerand an 

output layer, and also one or more hidden layer in 

between. The neighboring layers accomplish full 

connectivitybetween neurons, though no connection is 

present between neurons withina layer. We used a three-

layer networkANN in this paper. Furthermore, SSO is a 

universal convergence assured search method thatpresents 

the Exchange Local Search (ELS) into the traditional PSO. 

SSO outperforms traditional PSO on many problems 

instances. Therefore, SSO is used for reducing 

dimensionality. In this paper, on the basis of hybrid ANN 

and SSO, an improved software fault-proneness prediction 

methodis suggested. The block diagram ofrecommended 

softwarefault-prone prediction method is presented in Fig. 

3. 

 

 
Fig. 3 Block diagram of proposed approach. 

 

2.2. Software metrics 

Severalstudies nowadaystake software metrics as 

important parameter to recognizethemodules which are 
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fault-prone and their studiesrevealed that software metrics 

are actually useful in predicting the fault-pronemodules. 

Previous research suggestedvarious software product 

metrics containing both static and dynamic for the 

prediction of fault proneness and determining the testing 

persistence. Code structure measurement, a static metric, 

is used to recognize software complexity, for examplethe 

Halstead’s Software Science [13] and the McCabe’s 

Cyclomaticnumber. Whereas Dynamic metrics measure 

the testing persistence using structural and data flow 

coverage.In the paper, McCabe [14], Halstead [15] 

metrics, etc. are used for fault-proneness prediction. 

Figure 4describesexplanation of selected metrics.In this 

paper, each software module is denoted by 21 metrics for 

software fault-pronenessprediction in experiments.They all 

are eminent software metrics in the software fault-

pronenessprediction perspective and consequently we do 

not offer the explanation of these metrics. The detail of the 

metrics can be found in [16]. 

 

 
Fig. 4 Selected Metrics. 

 

2.3. Data standardization 

In the ANN, the input dataset is (x(i), y(i)) (i = 1, 2, . . ., 

q), where x(i)∈ Rdis software metric valuesvectorthat 

enumerate the metric ofthe ith class, and the total number 

of data samples is denoted by q. the output neuron y(i) of 

ith class is expected to give outputvalue “1” conforming 

the fault-proneness and “0” conforming the non fault-

proneness. Each input to the similar range is usually 

normalize while training the ANN.  

 

Performance of the training process is thus enhanced, 

ensuring the equality of each initial input asimportant.In 

the case of software metrics the upper bound is 

typicallyunrestricted in value range. Therefore, so as to 

normalize it is essential to attain upper andlower bounds of 

thevalue range of software metrics.According to 

datasetswe can obtain thevalue of every metric for definite 

datasets and software metrics. The minimumand 

maximum values can be obtain easily as the value of every 

single metric has been givenin these datasets. Letthe 

minimum and maximum values be min(x(j)) and 

max(x(j))respectively ofthe jthsoftware metric in the 

dataset for each software metric. Then the scaledvalue 

X(j)is 

 
Therefore, everynoted value is drawn to the closed interval 

[0,1]. (X(i), y(i)) (i = 1, 2, . . ., q) is the normalized dataset 

and X(i)∈ Rd  is the normalized metrics vector. 

2.4. Reducing dimensionality 

Suppose thata dataset, D = (S, M) where M = {m1, . . ., 

md} is d metrics and S = {S1, . . ., Sq} is q samples sets, 

respectively. C = {c1, . . .,ct} denotes type set.We convert 

the solution X of SSO intoa binary string to reduce 

dimensionality, as the following operation: In place 

ofsomeknown random number, rand, in the interval [0,1],  

if  rand < 𝑆 x  then X = 1, else X = 0 

whereS x =
1

(1+e−x )
 is sigmoidal function.In 

recommended reducing dimensionality method, a binary 

(0 or 1) stringcharacterizedthe position ofparticle i. Anda 

selected metric is denoted by 1, whereas a non-selected 

metric is denoted by 0. In SSO, whenwe get the absolute 

solution Pglobal, the corresponding metricisfollowedwith 

respect to Pglobal position. Assume M1⊂ M is the final 

selected metric,and let l <d bethe total selected metrics. 

 

III. PROPOSED ALGORITHM 

 

As the input & output dataset for ANNare normalized 

thusthe value will be in the range [0,1]. ANN is considered 

for a representation of “0” or “1”from the data space. 

Theselected metrics set M1represents the number of input 

neurons ofANN and there is a single output neuron in the 

proposed fault prediction method. So we can obtain the 

prediction algorithm as follows. 

Step 1.The input metrics Xis a normalized metric which 

constantly lies in the range [0,1]. 

Step 2. The dataset is divided into testing and training 

subset randomly. 

Step 3. ANN is modelled on the training subset & trained 

ANN is obtained. 

Step 4. The dimensionality of M is reduced using SSO to 

obtain M1 and the input dataset X is reduced to X’. 

Step 5. On the basis of new reduced dataset, trained ANN 

is developed. 

Step 6. Fault-proneness module is predicted using the 

ANN. 

 

IV. RESULTS & DISCUSSIONS 

 

In this study, four projectsfrom the NASA repository are 

used as datasets that are openlyavailable from the NASA 

Metrics Data Program [17]. Two of the selected datasets 

are PC1 and JM1, which are implemented in C language 

where a function is considered as module. The further two 

selected datasetsare KC1 and KC3 are implemented inC++ 

and Java languages respectively where a method is module 

in this instance. Everydataset hastheir software metrics 

and the associated variable that tells if the modulehas any 

fault-pronenessor not. The modules that havev(G) > 10 in 

the four selected datasets, classify to be fault-proneness as 
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stated by the regularMcCabes rules. The main 

characteristicsof the datasets are shown in Table1. 
 

 
Table 1. Selected datasets. 

 

This approachoperates based on the number of incorrect or 

correct answers.The data in the Confusion matrix 

demonstrates the performance of the proposedalgorithm 

for two-class problem
18

 that is shown in Table 2. 
 

 
Table 2. Confusion Matrix 

 

The accuracy of the proposed software fault-proneness 

detection approach is calculated as 

Accuracy =  
(TP + TN)

(TP + FP + TN + FN)
 

 

The results of simulation of software fault-proneness 

detection approach are provided, using MATLAB 

software and ANN toolkit. The parameters used to 

determinethe performance of the proposed method are 

shown in Fig 5. 
 

 
Fig. 5 Selected Parameters 

 

 
Fig. 7 Detection of fault-prone modules in the PC1 data set 

The results demonstration accuracy of the proposed 

approach’s performance is 90.08 %. 

 

 
Fig. 8 Detection of fault-prone modules in the JM1 data 

set 

The results demonstration accuracy of the proposed 

approach’s performance is 86.06 %. 

 

 
Fig. 9 Detection of fault-prone modules in the KC1 data 

set 

The results demonstration accuracy of the proposed 

approach’s performance is 92.03 %. 

 

 
Fig. 10 Detection of fault-prone modules in the KC3 data 

set 
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The results demonstration accuracy of the proposed 

approach’s performance is 89.13 %. 

 

V. CONCLUSIONS 

 

This paper examined the usage of hybrid ANN and SSOto 

improve the software fault-proneness prediction 

method.The presentedmethod can predict the software 

modules’ fault-pronenesssimply using software metrics. 

The keycharacteristicsof presented prediction methodisthat 

dimensionality of themetrics is reduced using SSO and 

software modules’ fault-proneness is predicted using 

ANN. The reduction dimensionality method is actually 

effectivesincethere are 3 control parameters in PSO, 

whereasSSO have single parameter only, consequently 

SSO performs accurately. Results from experimentsensure 

the simplifying dimensionalityprocedure which rely on 

SSO can reduce ANN model. The hybrid model of ANN 

& SSO has superior performance than currentbest other 

prediction methodologies and also it has verified to be 

muchoperational for foundingassociation between fault-

proneness and software metrics. In the fault-proneness of 

software modules,the non-selected metrics from metric 

space have less significance over the few selected 

metrics.Therefore instead of all metrics, developers must 

concentrate on these selected metrics in thesoftware 

development process.The results, at best, recommend a 

greater detection rate of the proposed approach higher than 

90%. 

The software fault-proneness prediction work should be 

further improved by using combination of other 

evolutionary machine learning algorithms for discovering 

the most significant feature for fault-proneness prediction 

and obtaining the susceptible modules and metrics. 
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